Introduction to PL/pgSQL

© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved aWS,

Procedural Language Overview

- PostgreSQL allows user-defined functions to be written in a
variety of procedural languages. The database server has no
built-in knowledge about how to interpret the function’s source
text. Instead, the task is passed to a handler that knows the
details of that particular language.

« PostgreSQL currently supports several standard procedural
languages

PL/pgSQL

PL/Python

PL/Java
And many more

aws

What is PL/pgSQL

- PL/pgSQL is the procedural extension to SQL with features of
programming languages

- Data Manipulation and Query statements of SQL are included
within procedural units of code

- Allows using general programming tools with SQL, for example:
loops, conditions, functions, etc.

- This allows a lot more freedom than general SQL, and is
lighter-weight than calling from a client program

aws

How PL/pgSQL works

- PL/pgSQL is like every other “loadable, procedural language.”

- When a PL function is executed, the fmgr loads the language
handler and calls it.

- The language handler then interprets the contents of the
pg_proc entry for the function (proargtypes, prorettype, prosrc).

aws

How PL/pgSQL works

« On the first call of a function in a session, the call handler will
“‘compile” a function statement tree.

- SQL queries in the function are just kept as a string at this point.

- What might look to you like an expression is actually a SELECT
query:

my_variable := some_parameter * 100;

aws

How PL/pgSQL works

- The PL/pgSQL statement tree is very similar to a PostgreSQL
execution tree.

« The call handler then executes that statement tree.

« On the first execution of a statement node, that has an SQL
query in it, that query is prepared via SPI.

- The prepared plan is then executed for every invocation of that
statement in the current session.

aws

PL/pgSQL Environment

PL/pgSQL Engine

PL/pgSQL PL/pgSQL
Block Procedural Executor

PL/pgSQL
Block

Ve
\

SQL Executor

PostgreSQL Server

Ve

aws

Kinds of PL/pgSQL Blocks

The basic unitin any PL/pgSQL code is a BLOCK. All PL/pgSQL code
is composed of a single block or blocks that occur either sequentially
or nested within another block. There are two kinds of blocks:

« Anonymous blocks (DO)
» Generally constructed dynamically and executed only once by the
user. It is sort of a complex SQL statement
- Named blocks (Functions and Stored Procedures)
» Have a name associated with them, are stored in the database,
and can be executed repeatably, and can take in parameters

aws

Structure of Anonymous Block

[<<label>>]

Comments

- There are two types of comments in PL/pgSQL

« -- starts a comment that extends to the end of the line
o /[* multi-line comments */

- Commenting is necessary to tell people what is intended and
why it was done a specific way

« Err on the side of too much commenting

aws

Variables

- Use_ variables for
« Temporary storage of data

Manipulation of stored values
Re-usability
Ease of maintenance

« Declared in the declarative section within a block

v_last_name

aws

Handling Variables

- Variables declared in the declarations section preceding a block
are initialized to their default values every time the block is
entered, not only once per function call

- Variables in a declaration section can shadow variables of the
same name in an outer block. If the outer block is named with a
label, its variables are still avallable by specifying them as

<Iabe|>.<varname>

aws

Declarations

Syntax

id ier

aws

%TYPE

- Declare variable according to :

« A database column definition
» Another previously declared variable

identifier table.column_name%TYPE;

Example

aws

%ROWTYPE

- Declare a variable with the type of a ROW of a table

identifier table%ROWTYPE;

Example

users%SROWTYPE;

aws

Records

- A record is a type of variable similar to ROWTYPE, but with no
predefined structure

« The actual structure of the record is created when the variable is
first assigned

- A record is not a true data type, only a place holder

DECLARE

r record;

aws

Variable Scope

DO $%

DECLARE
quantity integer :=

BEGIN
RAISE NOTICE , quantity;
quantity :=

DECLARE
quantity integer :=
BEGIN
RAISE NOTICE , quantity;
END;
RAISE NOTICE , quantity;

Qualify an Identifier

DO $$
<< mainblock >>
DECLARE
quantity integer :=
BEGIN
RAISE NOTICE
quantity :=

DECLARE
quantity integer :=
BEGIN
RAISE NOTICE
RAISE NOTICE
END;
RATSE NOTICE

’

’

quantity;

, mainblock

, quantity;

quantity;

.quantity;

RAISE

- Reports messages
» Can be seen by the client if the appropriate level is used

RAISE NOTICE 'Calling cs_create_job(%)', v_job_id;

aws

Assigning Values

- Use the assignment operator (:=or =)

v_last_name

v_date

v_last_name := (v_last_name) ;

v_date := to_date(

aws

SELECT in PL/pgSQL

- Retrieve data from the database with a SELECT statement
- Queries must return only one row

- INTO clause is required

aws

INSERT / UPDATE / DELETE

~_forum name forums.nar

forums (

~ forum_name) ;

aws

PERFORM

- Evaluate an expression or query but discard the result

- Frequently used when executing maintenance commands

PERFORM create_partition (

aws

Structure of Named Blocks

[function name] ()
[return_typel $$
[<<label>>]

[label]
$$ plpgsql;

Function Example

CREATE FUNCTION get_user_count ()
RETURNS integer

AS §$
DECLARE

v_count integer;
BEGIN

SELECT count (*)

INTO v_count
FROM users;

RETURN v_count;
END
$$ LANGUAGE plpgsqgl;

Dollar Quoting

- The tag $$ denotes the start and end of a string
- Optionally can have a non-empty tag as part of the quote
- %93

- abc
- Can be used to prevent unnecessary escape characters

throughout the string

$functions

$function$

aws

Function Parameters

- One or more parameters can be used
- Parameter names are optional, but highly recommended

CREATE FUNCTION get_user_name (varchar, p_last_name varchar)
RETURNS varchar AS $$
DECLARE
v_first _name varchar;
V_name varchar;
BEGIN
v_first_name := $1;
SELECT name INTO v_name FROM users
WHERE first_name = v_first _name AND last_name = p_last name
LIMIT

RETURN v_name;
END
$$ LANGUAGE plpgsqgl;

Default Parameters

- Paramters can have a default value
- This essentially makes them optional parameters
CREATE FUNCTION get_user_count (p_active boolean DEFAULT true)
RETURNS integer AS $$
DECLARE

v_count integer;

BEGIN
SELECT count (*) INTO v_count
FROM users
WHERE active = p_active;

RETURN v_count;
END
$$ LANGUAGE plpgsql;

aws

Assertions

« A convenient shorthand for inserting debugging checks
- Can be controlled by plpgsql.check asserts variable

CREATE FUNCTION get_user_count (p_active boolean DEFAULT true)
RETURNS integer AS $$
DECLARE
v_count integer;
BEGIN
ASSERT p_active IS NOT NULL;

SELECT count (*) INTO v_count
FROM users
WHERE active = p_active;

RETURN v_count;
END
$$ LANGUAGE plpgsql;

PL/pgSQL Control Structures

© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved

aws

)

Control the Flow

- The logical flow of statements can be changed using conditional
IF statements and loop control structures

» Conditional Strucutres
» Loop Structures

aws

IF Statements

IF-THEN

IF boolean-expression

statements

atements

aws

Nested |IF Statements

statements

IF;

aws

ELSIF Statements

- A sequence of statements based on multiple conditions

IF

ELSIF

ELSIF

aws

CASE Statements

- Used for complex conditionals
- Allows a variable to be tested for equality against a list of values

status

NOTICE

RAISE NOTICE

RAISE NOTICE

aws

Searched CASE Statements

- Each WHEN clause sequentially evaluated until a TRUE is

evaluated .
- Subsequent WHEN expressions are not evaluated

pd AND
RAISE NOTICE
X AND

RAISE NOTICE

aws

FOUND

« FOUND, which is of type boolean, starts out false within each
PL/pgSQL function call

« It is set by each of the following types of statements:

« A SELECT INTO statement sets FOUND true if it returns a row,

false if no row is returned o
« A PERFORM statement sets FOUND true if it produces (and

discards) a row, false if no row is produced

« UPDATE, INSERT, and DELETE statements set FOUND true if at
least one row is affected, false if no row is affected

« A FETCH statement sets FOUND true if it returns a row, false if no

row is returned. L)
+ A FOR statement sets FOUND true if it iterates one or more times,

else false.

aws

DECLARE

v_first_name users.first _name%TYPE;

v_last_name users.last name%TYPE;
BEGIN
SELECT first name, last_name
INTO v_first name, v_last_name
FROM users
WHERE user_id =

IF FOUND THEN
RAISE NOTICE
ELSE
RAISE NOTICE
END IF;

Loop Structures

« Unconstrained Loop
- WHILE Loop
- FOR Loop

- FOREACH Loop

aws

Unconstrained Loops

« Allows execution of its statements at least once, even if the
condition already met upon entering the loop

aws

CONTINUE

CONTINUE [label] [WHEN expression];

- If no label is given, the next iteration of the innermost loop is
begun

- If WHEN is specified, the next iteration of the loop is begun only
if expression is true. Otherwise, control passes to the statement

after CONTINUE _ . o
« CONTINUE can be used with all types of loops; it is not limited to

use with unconstrained loops.

LOOP

EXIT WHEN count >
CONTINUE WHEN count <

END LOOP;

aws

WHILE Loops

ition LOOP

END LOOP;

- Repeats a sequence of statements until the controlling condition
is no longer TRUE
- Condition is evaluated at the beginning of each iteration

WHILE NOT done LOOP

END LOOP;

aws

FOR Loops

FOR <loop_counter> IN [REVERSE] <low bound>..<high bound> LOOP

END LOOP;

- Use a FOR loop to shortcut the test for the number of iterations.
- Do not declare the counter; it is declared implicitly

DO $§
BEGIN
FOR i IN 1..10 LOOP

NOTICE

aws

Looping Over Results

- For loops can directly use a query result

aws

Looping Over Results

- The last row is still accessible after exiting the loop

email

NOTICE

aws

Looping Over Results

- Looping over dynamic SQL
- Re-planned each time it is executed

rec RECORD;

text;

, rec.email;

aws

Looping Over Arrays

« Uses the FOREACH statement

aws

Looping Over Arrays

- Use the SLICE syntax to iterate over multiple dimensions

1, ARRAY[

AY users LOOP

SE NOTICE , v_dim;
LOOP;

aws

Nested Loops

- Nest loops to multiple levels
- Use labels to distinguish between blocks
- Exit the outer loop with the EXIT statement that references the
label
BEGIN
<<Outer_loop>>
LOOP
v_counter := v_counter +
EXIT WHEN v_counter >
<<Inner_ loop>>
LOOP
EXIT Outer_ loop WHEN total done =

EXIT WHEN inner_ done =

END LOOP Inner loop;
END LOOP Outer_1loop;
END

Dynamic SQL

© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved

aws

N

Dynamic SQL

« A programming methodology for generating and running SQL
statements at run time

« Useful for:
» Ad-hoc query systems
 DDL and database maitenance

EXECUTE command-string [INTO target] [USING expression [, ...] 1;

aws

Dynamic SQL - CAUTION

- There is no plan caching for commands executed via EXECUTE
» The command is planned each time it is run

« Open to SQL injection attacks
 All incoming parameters need to be validated
 Bind the parameters to the command instead of generating the
string

aws

Execute

CREATE FUNCTION grant_ select (p_table varchar, p role varchar)
RETURNS void AS

$$

DECLARE

sql varchar;

BEGIN
1= || p_table || p_role;
EXECUTE sqgl;
END

$$ LANGUAGE plpgsqgl;

Note: Do not do this. Validate the parameters first.

aws

Execute Into

CREATE FUNCTION get_connection_count (p_role varchar)
RETURNS integer
AS $¢
DECLARE
v_count integer;
sql varchar;
BEGIN

EXECUTE sgl INTO v_count;
RETURN v_count;

END
$$ LANGUAGE plpgsqgl;

Note: Do not do this. Validate the parameters first.

Execute Using

CREATE FUNCTION get_ connection_ count (p_role varchar)
RETURNS integer
AS $%
DECLARE
v_count integer;
sqgl varchar;
BEGIN
sqgl :=

EXECUTE sqgl INTO v_count USING p_role;

RETURN v_count;
END
$$ LANGUAGE plpgsql;

PL/pgSQL Cursors

© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved aWS,

Cursors

- Every SQL statement executed by PostgreSQL has an individual

cursor associated with it
« Implicit cursors: Declared for all DML and PL/pgSQL SELECT

statements
 Explicit cursors: Declared and named by the programmer

» Use CURSOR to individually process each row returned by a
multiple-row SELECT Statement

aws

Cursor Flow

DECLARE

Create a named
SQL statement

OPEN

Identify the active
result set

No

FETCH

Load the row
into variables

I

EMPTY
A

Check is the
result setis
exhausted

—— ™

CLOSE

Release the
resources

aws

Declaring Cursors

lared as a variable
eyword to move backwards through a cursor

>0
15

w
@)
piex
[e0)
=
-
=0

name [[NO] SCROLL] CURSOR [(arguments)] FOR query;

integer)

tenkl

uniquel =

aws

Opening Cursors

- The OPEN method to use is dependant on the way it was
declared

aws

Fetching Data

« FETCH returns the next row

FETCH curs2 INTO foo, bar, baz;

« FETCH can also move around the cursor

FETCH LAST FROM curs3 INTO x, Yy;

aws

Fetching Data

CREATE FUNCTION grant_select (p_role varchar)
RETURNS void AS $%
DECLARE
sqgl varchar;
r record;
tbl_cursor CURSOR FOR SELECT schemaname, relname
FROM pg_stat_user_ tables;
BEGIN
OPEN tbl_cursor;
LOOP
FETCH tbl_cursor INTO r;
EXIT WHEN NOT FOUND;

sql := || r.schemaname ||

|| r.relname || || p_role;
EXECUTE sql;
END LOOP;
CLOSE tbl_cursor;
END
$$ LANGUAGE plpgsql;

PL/pgSQL Returning Data

© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved

aws

)

Returning Scalars

« Simplest return type

CREATE FUNCTION get_connection_count ()
RETURNS integer AS $$
DECLARE
v_count integer;
BEGIN
SELECT count (*) INTO v_count
FROM pg_stat_activity;

RETURN v_count;
END
$$ LANGUAGE plpgsql;

SELECT get_connection_count () ;

get_connection_ count

Returning Nothing

- Some functions do not need a return value
 This is usually a maintenance function of some sort such as

creating partitions or data purging
« Starting in PostgreSQL 11, Stored Procedures can be used in
these cases

« Return VOID

CREATE FUNCTION purge_log ()
RETURNS void AS

3

BEGIN

DELETE FROM moderation_log

WHERE log_date < now() - interval;
END
$$ LANGUAGE plpgsql;

aws

Returning Sets

» Functions can return a result set
« Use SETOF

- Use RETURN NEXT _
« RETURN NEXT does not actually return from the function

» Successive RETURN NEXT commands build a result set

- A final RETURN exits the function

aws

Returning Sets

CREATE FUNCTION fibonacci (num integer)
RETURNS SETOF integer AS $$
DECLARE

a int

b int
BEGIN
IF (num <= 0)
THEN RETURN;
END IF;

RETURN NEXT a;
LOOP
EXIT WHEN num <=
RETURN NEXT b;
num = num - H
SELECT b, a + b INTO a, b;
END LOOP;
END;
$$ language plpgsql;

Returning Records

- More complex structures can be returned

CREATE FUNCTION get_oldest_session()
RETURNS record AS
$%
DECLARE
r record;
BEGIN
SELECT *
INTO r
FROM pg_stat_activity
WHERE usename = SESSION_USER
ORDER BY backend_ start DESC
LIMIT

RETURN
END
$$ LANGUAGE plpgsqgl;

Returning Records

- Using a generic record type requires the structure to be defined
at run time

ERROR a definition 11 U functions ...

LINE

n boolean, o

aws

Returning Records

- All tables and views automatically have corresponding type
definitions so they can be used as return types

CREATE FUNCTION get_oldest_ session|()
RETURNS pg_stat_activity AS $$
DECLARE
r record;
BEGIN
SELECT *
INTO r
FROM pg_stat_activity
WHERE usename = SESSION_USER
ORDER BY backend_ start DESC
LIMIT

RETURN r;
END
$$ LANGUAGE plpgsql;

Returning Sets of Records

- Many times, a subset of the table data is needed
« A view can be used to define the necessary structure

running_ queries

runtime, pid,

, query

aws

Returning Sets of Records

- RETURN QUERY can be used to simplify the function

running_ i rows int, p_len int

running_

QUERY runtime, pid, usename,
,p_len)

running_g

pP_rows;

aws

OUT Parameters

« Used to return structured information

- RETURNS is optional, but must be record if included

active_locks (p_exclusive int, p_share int)

aws

OUT Parameters

CREATE FUNCTION active_locks (OUT p_exclusive int, OUT p_share int) AS $$
DECLARE
r record;
BEGIN
p_exclusive :=
p_share := 0;
FOR r IN SELECT 1.mode
FROM pg_locks 1, pg_stat_activity a
WHERE a.pid = 1l.pid
AND a.usename = SESSION_USER
LOOP
IF r.mode = THEN

p_exclusive := p_exclusive +
ELSIF r.mode = THEN

p_share := p_share +
END IF;
END LOOP;
END
$$ LANGUAGE plpgsql;

OUT Parameters

« TIP: Think in sets not loops when writing functions for better
performance
« NOTE: Use “OR REPLACE” when updating functions

CREATE OR REPLACE FUNCTION active_locks (OUT p_exclusive int,
OUT p_share int)
AS §%
BEGIN
SELECT sum (CASE 1.mode WHEN THEN ELSE END) ,
sum (CASE 1.mode WHEN THEN ELSE END)
INTO p_exclusive, p_share
FROM pg_locks 1, pg_stat _activity a
WHERE a.pid = 1l.pid
AND a.usename = SESSION USER;

END
$$ LANGUAGE plpgsql;

Structured Record Sets
« Use OUT parameters and SETOF record

CREATE FUNCTION all_active_ locks (OUT p_lock_mode varchar,
OUT p_count int)

RETURNS SETOF record AS $%
DECLARE
r record;
BEGIN
FOR r IN SELECT 1.mode, count(*) as k
FROM pg_locks 1, pg_stat activity a
WHERE a.pid = l.pid
AND a.usename = SESSION USER
GROUP BY

p_lock mode := r.mode;
p_count := r.k;
RETURN NEXT;

END LOOP;

RETURN;

Structured Record Sets
- Can return a TABLE

CREATE FUNCTION all_active_ locks ()
RETURNS TABLE (p_lock_mode varchar, p_count int) AS $$

DECLARE
r record;
BEGIN
FOR r IN SELECT 1.mode, count(*) as k
FROM pg_locks 1, pg_stat _activity a
WHERE a.pid = l.pid
AND a.usename = SESSION USER
GROUP BY

p_lock mode := r.mode;
p_count := r.k;
RETURN NEXT;
END LOOP;
RETURN;
END
$$ LANGUAGE plpgsql;

Refcursors

« A cursor can be returned for large result sets

- The only way to return multiple result sets from a function

active_info(

aws

Refcursors

CREATE FUNCTION active_info (OUT p_queries refcursor,
OUT p_locks refcursor)
AS §%
BEGIN
OPEN p_qgueries FOR SELECT runtime, pid, usename, waiting,
substring (query, 1,) as query
FROM running_gueries
ORDER BY DESC;

OPEN p_locks FOR SELECT 1.mode, count(*) as k
FROM pg locks 1, pg_stat_activity a
WHERE a.pid = l.pid
AND a.usename = SESSION_USER
GROUP BY 1;
END
$$ LANGUAGE plpgsql;

Handling Meta Information and Exceptions

© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved

aws

)

Meta Information

- Information about the last command run inside of a function
- Several available values
« ROW COUNT

- RESULT_OID
- PG_CONTEXT

GET DIAGNOSTICS variable { = | :=} item [, ... 1;

aws

Meta Information

purge_log ()

moderation_log

log_date < now() - interval;

1 _rows =
RAISE NOTICE

plpgsql;

Exceptions

- An exception is an identifier in PL/pgSQL that is raised during
execution o .
- It is raised when an error occurs or explicitly by the function

- Itis either handled in the EXCEPTION block or propagated to
the calling environment

[DECLARE]
BEGIN

Exception/Error is Raised
EXCEPTION

Error is Trapped
END

aws

Exceptions

- Use the WHEN block inside of the EXCEPTION block to catch
specific cases

« Can use the error name or error code in the EXCEPTION block

WHEN division_by_ zero THEN ...
WHEN SQLSTATE '22012' THEN ..

« Use the special conditions OTHERS as a catch all

WHEN OTHERS THEN ...

aws

Sample Error Codes

Code

Name

22000
22012
2200B
22007
22023
2200M
2200S
23P01

data_exception
division_by zero
escape_character_conflict
invalid_datetime_format
invalid_parameter_value
invalid_xml_document
invalid_xml_comment
exclusion_violation

aws

Exceptions

CREATE OR REPLACE FUNCTION get_ connection_count ()
RETURNS integer AS $$
DECLARE

v_count integer;

BEGIN
SELECT count (*)
INTO STRICT v_count
FROM pg_stat_activity;

RETURN v_count;
EXCEPTION
WHEN TOO_MANY_ ROWS THEN
RAISE NOTICE
RETURN ;
WHEN OTHERS THEN
RAISE NOTICE
RETURN 8
END
$$ LANGUAGE plpgsql;

Exception Information
« SQLSTATE Returns the numeric value for the error code.

- SQLERRM Returns the message associated with the error
number.

DECLARE
v_count integer;
err_num integer;
err_msg varchar;
BEGIN

EXCEPTION
WHEN OTHERS THEN
err_num := SQLSTATE;
err_msg := SUBSTR (SQLERRM, 1,
RAISE NOTICE
RETURN

Exception Information

- The details of an error are usually required when handling

« Use GET STACKED DIAGNOSTICS to return the details

GET STACKED DIAGNOSTICS variable { = | := 1} item [, ...];

aws

Exception Information

Diagnostic Item

RETURNED_SQLSTATE
COLUMN_NAME
CONSTRAINT _NAME
PG_DATATYPE _NAME
MESSAGE_TEXT
TABLE_NAME

SCHEMA NAME
PG_EXCEPTION_DETAIL
PG_EXCEPTION_HINT
PG_EXCEPTION_CONTEXT

aws

Propagating Exceptions

- Exceptions can be raised explicitly by the function

CREATE OR REPLACE FUNCTION grant_select (p_role varchar)
RETURNS void AS
$$
DECLARE
sql varchar;
r record;
tbl_cursor CURSOR FOR SELECT schemaname, relname
FROM pg_stat_user_ tables;
BEGIN
IF NOT EXISTS (SELECT FROM pg_roles
WHERE rolname = p_role) THEN
RAISE EXCEPTION , p_role;
END IF;

Exceptions

- TIP: Use exceptions only when necessary, there is a large

performance impact

« Sub transactions are created to handle the exceptions

CREATE FUNCTION t1 (
RETURNS void AS $$
DECLARE
i integer;

BEGIN

$$ LANGUAGE plp

Avg Time

CREATE FUNCTION t2 ()
RETURNS void AS $$
DECLARE
i integer;

BEGIN

EXCEPTION

WHEN OTHERS THEN
RETURN;
END
$$ LANGUAGE plpgsql;

Avg Time

aws

PL/pgSQL Triggers

© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved

aws

)

Triggers

- Code that gets executed when an event happens in the database
- INSERT, UPDATE, DELETE

- Event Triggers fire on DDL
- CREATE, DROP, ALTER

aws

Use Cases
« Table Partitioning before PostgreSQL 10

- Automatically generate derived column values
- Enforce complex constraints

- Enforce referential integrity across nodes in a distributed
database

- Provide transparent event logging

- Provide auditing

» Invalidate cache entries
aws

Structure

- Unlike other databases, a trigger is broken into two pieces
« Trigger
« Trigger Function

{ event [OR ...

bl

(condition)]

function name (arguments)

aws

Trigger Function

« A function with no parameters that returns TRIGGER

aws

Trigger Events

« Insert
- Update
- Delete

« Truncate

aws

Timing

- Before o _
» The trigger is fired before the change is made to the table

« Trigger can modify NEW values
« Trigger can suppress the change altogether

- After
« The trigger is fired after the change is made to the table

« Trigger sees final result of row

aws

Frequency

« For Each Row. _ _
« The trigger is fired once each time a row is affected

« For Each Statement _ _
» The trigger is fired once each time a statement is executed

aws

Trigger Overhead

- A firing trigger adds overhead to the calling transaction

« The percentage overhead can be found with a simple pgbench
test:

trigger_test

trigger_test

aws

Trigger Overhead

pgbench

pgbench

Inserts:
Updates:

-n -t 100000
-f INSERTS.pgbench postgres

-n -s 100000 -t 10000
-f UPDATES.pgbench postgres

4510 tps
4349 tps

aws

Trigger Overhead

empty_trigger ()

$$

y_trigger

trigger_

empty

aws

Trigger Overhead

pgbench -n -t 100000
-f INSERTS.pgbench postgres

pgbench -n -s 100000 -t 10000
-f UPDATES.pgbench postgres

Inserts: 4296 tps (4.8% overhead)
Updates: 3988 tps (8.3% overhead)

aws

Arguments

- NEW
« Variable holding the new row for INSERT/UPDATE operations in

row-level triggers

- OLD
« Variable holding the old row for UPDATE/DELETE operations in

row-level triggers

aws

NEW vs OLD

audit (

nt_time timestamp

aws

NEW vs OLD

CREATE OR REPLACE FUNCTION audit_trigger ()
RETURNS TRIGGER AS $$
BEGIN
INSERT INTO audit
VALUES (CURRENT TIMESTAMP,
CURRENT USER,

row_to_json (OLD)

row_to_json (NEW)) ;

RETURN NEW;
END;
$$
LANGUAGE plpgsql;

Arguments

- TG_OP
A string of INSERT, UPDATE, DELETE, or TRUNCATE telling for
which operation the trigger was fired

- TG_NAME
 Variable that contains the name of the trigger actually fired

- TG_WHEN
A string of BEFORE, AFTER, or INSTEAD OF, depending on the
trigger’s definition

- TG_LEVEL
A string of either ROW or STATEMENT depending on the trigger’s
definition

aws

TG OP

dit (

timestamp

aws

CREATE OR REPLACE FUNCTION audit_trigger ()
BEGIN
IF (TG_OP =) THEN
INSERT INTO audit VALUES
(CURRENT TIMESTAMP, CURRENT USER,TG_OP,
RETURN OLD;
ELSIF (TG_OP =) THEN
INSERT INTO audit VALUES
(CURRENT TIMESTAMP, CURRENT USER, TG_OP,
row_to_json (OLD), row_to_json (NEW)) ;
RETURN NEW;
ELSIF (TG_OP =) THEN
INSERT INTO audit VALUES
(CURRENT_ TIMESTAMP, CURRENT USER,TG_OP,
RETURN NEW;
END IF;
RETURN NULL;
END;
$$ LANGUAGE plpgsql;

RETURNS TRIGGER AS #$$

row_to_json (OLD) ,

null) ;

null, row_to_json (NEW)) ;

Arguments

- TG_TABLE_NAME
« The name of the table that caused the trigger invocation.

- TG_RELNAME
« The name of the table that caused the trigger invocation

- TG_RELID
» The object ID of the table that caused the trigger invocation

- TG_TABLE_SCHEMA
« The name of the schema of the table that caused the trigger
invocation

aws

TG_TABLE_NAME

it (

timestamp

aws

TG_TABLE_NAME

audit_trigger ()

)
audit

(
TG_TABLE_NAME, row_to_json (

’

ELSIF (TG_OP =
audit
(

TG_TABLE_NAME,

! , TG_OP,

row_to_json (), row_to_json(

Arguments

- TG_NARGS
« The number of arguments given to the trigger procedure in the
CREATE TRIGGER statement

- TG_ARGV]]
« The arguments from the CREATE TRIGGER statement

aws

Trigger Use Cases

- Table Partitioning
 Splitting what is logically one large table into smaller physical
pieces

« Used to:
« Increase performance

» Archive data
« Storage tiering

aws

Table Partitioning before PostgreSQL 10

- Create child tables for each partition

aws

Table Partitioning before PostgreSQL 10

« The trigger function will move the row to the correct child table

partition_audit_trigger ()

$3

to_char (NEW.event_time, |

NEW.event_time, NEW.user_name, NEW.operation,

NEW. table_name, NEW.old row, NEW.new_row;

plpgsql;

Table Partitioning before PostgreSQL 10

- A trigger needs to be added to the parent table

partition_audit_trigger

audit

partition_audit_trigger () ;

aws

Execution Performance

- Performance is much better if dynamic SQL is not used

CREATE OR REPLACE FUNCTION partition_audit_trigger ()
RETURNS TRIGGER AS $$
BEGIN
IF (NEW.event_time >= DATE AND
NEW.event_time < DATE) THEN
INSERT INTO audit_. VALUES (NEW.*) ;
ELSIF (NEW.event_time >= DATE
NEW.event_time < DATE
INSERT INTO audit_. VALUES (NEW.¥*) ;
ELSE
RAISE EXCEPTION

END IF;

RETURN NULL;
END;
$$ LANGUAGE plpgsqgl;

Moving Partitions

- If the column used for the partition key changes, the row may
need to be moved to a different partition

move_partition_audit_trigger
audit_.
move partition_audit_trigger (
move partition_audit_trigger

audit_.

move partition_audit_trigger (

aws

Moving Partitions

CREATE FUNCTION move_partition audit_trigger () RETURNS TRIGGER AS $$
DECLARE

start_date DATE;

end_date DATE;
BEGIN

start_date := TG_ARGV[0];

end_date := TG_ARGVI[1];

IF (NEW.event_ time IS DISTINCT FROM OLD.event_time) THEN
IF (NEW.event_ time < start_date OR NEW.event time >= end_date) THEN
EXECUTE || TG_TABLE_SCHEMA || | | TG_TABLE_NAME | |
USING OLD.ctid;
INSERT INTO audit VALUES (NEW.*) ;
RETURN null;
END IF;
END IF;
RETURN NEW;
END;
$$ LANGUAGE plpgsql;

Moving Partitions

- Only fire the trigger if the partition key changes

CREATE TRIGGER move_partition_ audit_trigger
BEFORE UPDATE
ON audit_.
FOR EACH ROW
WHEN (NEW.event_time IS DISTINCT FROM OLD.event_time)
EXECUTE PROCEDURE

move_partition_audit_trigger ()i

CREATE TRIGGER move_partition_ audit_trigger
BEFORE UPDATE
ON audit_.
FOR EACH ROW
WHEN (NEW.event_time IS DISTINCT FROM OLD.event_time)
EXECUTE PROCEDURE

move_partition_audit_trigger ()i

Trigger Use Cases

- Calculate columns
 Calculate complex values

 Extract values from complex structures
» Enforce derived values when using denormalization

» Used to:
* Increase performance

e Simplify queries

aws

Extract JSON

$ head -n 5 zips.json

{7_iar
”loc”
{ 7_ia~
”loc”
{ »_ia~
”loc”
{7_iar
”loc”
{ 7_ia~
”loc”

701001"”, "city” " AGAWAM” ,

[-72.622739, 42.070206], "pop”
7010027, "city” " CUSHMAN" ,

[-72.51564999999999, 42.377017
701005”, ”city” "BARRE”,

[-72.10835400000001, 42.409698
701007", "city” "BELCHERTOWN” ,
[-72.41095300000001, 42.275103
”01008”, ”city” "BLANDFORD” ,

[-72.936114, 42.182949], "pop”

1.

1,

1,

15338,

"pop”

"pop”

"pop”

1240,

"state”

36963,

4546,

10579,

"state”

"MA"

"state”

"state”

"state”

" MA”

}

}

"MA”

TMA”

TMA”

}

}

}

aws

Extract JSON

extract_data_trigger ()

£

NEW.zip_ code := NEW.data->>
NEW.state := NEW.data->>

plpgsql;

extract_data_trigger
OR zips

extract_data_trigger() ;

Trigger Use Cases

- Cache invalidation
» Remove stale entries from a cache ,
» The database tracks all data so is the single source of truth

» Used to:
» Simplify cache management

* Remove application complexity
Note: Foreign Data Wrappers simplify this process significantly

Note: ON (action) CASCADE contraints can simplify this too.

aws

Cache Invalidation

remove_cache_trigger ()

£

myredis_cache

= OLD.id: :varchar;

plpgsql;

remove_cache_ trigger
OR users

remove_cache_trigger () ;

Cache Invalidation - Async

- The latency of updating the cache may not be an acceptable as
part of the main transaction

remove_cache_trigger ()

£

PERFORM pg_notify (TG_TABLE_NAME, OLD.id::varchar) ;

plpgsqgl;

aws

Things to Remember

- Triggers are part of the parent transaction
« The trigger fails, the main transaction fails
« The main transaction rolls back, the trigger call never happened
« If the trigger takes a long time, the whole transaction timing is
affected

- Triggers can be difficult to debug
» Especially cascaded triggers

aws

PL/pgSQL Best Practices

© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved

aws

)

Programming Practices

- Follow good programming practices
« Indent code consistantly
« Comment code liberly
« Code reuse/modularity practices are different than other
programming languages
* Deep call stacks in PL/pgSQL can be performance intensive

aws

Naming Conventions

- Create and follow a consistent naming convention for objects
» PostgreSQL is case insensitive so init cap does not work, use ”_”
to seperate words in names
« Prefix all parameter names with something like “p_
« Prefix all variable names with something like “v_"

aws

Performance

- Avoid expensive constructs unless necessary
« Dynamic SQL
« EXCEPTION blocks

aws

