
Dollars for Disks
Thoughts on Running Postgresql in the Cloud Computing Era

Jeffrey Zampieron – Postgres Conf NY 2019

About Me

u Technical Lead/Architect @ MedAcuity Software
u MedTech Consulting

u Specializing in software compliant w/ ISO13485:2016 and ISO/IEC62304

u https://www.medacuitysoftware.com/

u Previous
u CTO/Director of Cloud @ Beco/Convene Technology

u IoT/Mobile/Cloud system for Experiential User Engagement

u Big-Data for the CRE Stakeholder

u Sr. Tech Staff @ Systems & Technology Research LLC
u DoD/IC Research into UxV navigation, Vision, ML, Cyber

u Hyper-scale data processing via private cloud systems

2

https://www.medacuitysoftware.com/

Motivation

u Where did this talk come from?

u Lessons learned running PG in the cloud

u A startup needing to be efficient to survive

u Goals

u System engineering approach to PG solutions

u Provoke thoughts: Data and Example to guide evaluating your own situation

u Non-goals

u Exhaustive PG performance or cost studies

u Tuning and tweaking every last ounce of $/TPS out of PG

3

Background

u Problem Statement
u High volume/High concurrency data ingest (OLTP)

u Real Time and Historical Analytics (OLAP)

u Management/Provisioning and Production Fulfillment (ERP)

u Assets & Constraints
u Limited budget (cloud credits)

u Small Dev/Ops team

u No legacy concerns

u Time to market is critical
u The first big customer just landed

4

Landing Pad – System Overview

u Cloud Native Architecture
u Azure

u DC/OS – Mesos

u Stateful
u Postgres 9/10

u Kafka

u Stateful on dedicated VMs
u I/O contention on shared VMs was problematic

u Initial PG design focused only on required application performance
u Expected PG load + headroom

5

Landing Pad - PG

u PG was running on a Standard D32s v3 - $2885.15 / month

u 32 vCPU, 128G RAM w/ 128G AMD SSD - $1330.88/month (PAYG)

u Data (4xP40 – 2TB – RAID0), Log (2xP40 – 2TB – RAID0)

u 6xP40 @ $259.05/month = $1554.27/month

u Prices as of 17-March-2019

u Also had a read-replica – Duplicate Machine

u Spending ~$5500/month just on Postgres

u Performance was ~6000TPS

u Observation: Disks and I/O in the cloud is expensive!
u First thought is usually… what did I do wrong?

6

Dollars for Disks – The Wrong Way

u Scenario
u At the time, we were on Azure and not moving.

u Spending lots of $/month on disks

u Are we getting what we are paying for?

u What other options exist?

u What do we really need?

u How we landed in the above scenario is an interesting story itself…

u Focus in on “what do we need”
u With some measure of “Are we getting what we are paying for?”

u Plus reasonable room to grow

7

What do you need – System Eng.

u Looking at cost reducing the PG server (largest spend)

u The rough approach – Trying “the right way”

u Start with top-level customer visible requirements

u Define some PG KPIs (derived requirements)

u Survey the landscape

u Identify limitations

u Prototype and Test

u Implement

u Profit!?!?

u Foreshadowing: AWS tests results and thoughts

8

Top-Level Requirements

u Can be loosely defined as long as they are bounded
u Scenario below is what we used to inform the tests
u SLAs

u Uptime (planned/unplanned) – 99%, ~3 days per year

u RTO – 8 hours

u RPO – 1 day

u Response Time – Human perceptible (less than 250ms – 99%)
u Context dependent

u Concurrent Users/Application TPS Load
u ~500k concurrent handsets – application specific

9

PG KPIs

u Based on the previous slide we derive the following PG goals:
u Replica is a nice-to-have. Manual fail-over is tolerable in minutes
u 5000TPS min
u Daily backups

u What’s the lowest TCO way to achieve the above?
u TCO considerations

u NRE
u PG Deployment setup

u Backup/Restore/Failover tooling

u Ops
u Recurring IaaS/DBaaS depending on solution

10

Survey the Landscape

u We selected the following landscape to limit test scope and cost

u DBaaS
u AWS RDS

u Self-Hosted
u AWS EC2

u Metal
u Private “Datacenter”

11

Bounds – Identified Limitations

u RDS
u RAM, CPU, IOPS, I/O Throughput, Network Throughput

u EC2
u RAM, CPU, IOPS, I/O Throughput, Disks per VM, Network Throughput

u EBS
u IOPS per Vol, Capacity per Vol

u Metal
u RAM, CPU, IOPS, I/O Throughput, Disks per Box, Network Throughput

12

Bounds - Caveats

u When is persistent storage not actually persistent?
u When its an AWS Instance Store.

u When its an Azure “Temporary” Disk/Cache

u Thought exercise: How are these super-fast, low-latency disk usable for a
database? Is this a problem on metal?

u FMEA
u What does AWS/Azure/etc talk about as far as failure modes?

u What are the effects and recovery scenarios?

u How much redundancy do I need in my system for an application SLA?

13

Prototype and Test

u All tests are run on AWS or Metal

u Using the same tooling

u IaaC, Tooling and Raw/Collected Results all provided

u https://github.com/jzampieron/pgconf2019

u Master branch is the “release” branch

u Develop branch is my work in progress

14

https://github.com/jzampieron/pgconf2019

Results
u $/month/TPS are used to normalize cost

u Recurring costs are included in the $/month/TPS

u Power, Cooling, Network, etc

u Assumptions about costs are listed and are rough estimates

u Use your own numbers if repeating this exercise

u Non-recurring costs

u Amortized over 36 months for cap-ex into $/month

u 36 months is a typical depreciation schedule for cap-ex assets.

u Amortized over 18 months for NRE into $/month

u 18 months is the expected design life for a cloud implementation

u Your design lifespan may be different. Adjust accordingly.

15

Results Matrix 16

Results Chart 17

Metal AWS

Smaller
Values
are Better

Results Chart w/ TPS 18

Results Analysis

u RDS
u There is a plateau point for a given instance size

u Increasing the disk IOPS evaporates money for no performance benefit

u Unable identify an obvious cause for larger instances: CPU isn’t pegged

u Would be nice if AWS RDS was smart enough to set limits here for you

u Small and medium instances better value

u EC2
u For larger instances (r5.12xlarge) it appears to be trivially easy to beat

RDS

19

Analysis
u For the simple, non-redundant case

u Metal is king. Bar none. This laptop matches a m5.xlarge at ~1/5th the cost ratio

u DBaaS has certain price/performance points where its maybe worthwhile

u DevOps for this case is easy
u Do some analysis

u If run-your-own is cheaper (EC2) then do it!

u Future Work: Complex Cases: Multi-master, Replicas
u The story is much less clear

u How much is DevOps time worth?

u Know of companies spending substantial engineering $ to avoid DBaaS

u Understand and test the failure cases. Try that with DBaaS.

20

Summary

u It is OK to solve problems by throwing $ at them
u Should at least understand what you are paying for.

u Are you getting what you need

u The obvious solution may not be the right solution
u EC2 may be better than RDS for large sizes

u Don’t boil the ocean
u Understand your redundancy and DR requirements

u Build to fit with a little room to grow

21

Future Work
u Expand the Trade Study

u Metal Configurations / Co-Lo (rent-a-box)
u Private Clouds

u Nutanix, DC/OS on Metal, Tectonic/OpenShift on Metal
u Various SDS solutions (OpenEBS, Portworx, Rook, ScaleIO, etc.)

u Public Clouds
u Azure, Rackspace, Digital Ocean, Google Cloud

u Refine the approach
u Optimization

u Anyone want to help tune PG in docker for each AWS EC2 instance type/disk setup?

u Additional considerations
u Technical
u Cost

u Focus is still on TCO for a given set of requirements ($/month/TPS)

22

Enhancement Opportunities
u These are some ideas to make PG even better
u DevOps Enhancements

u Quiesce for filesystems with Atomic CoW snapshots
u Matters more for split Data / WAL

u Some SDS vendors support this (Portworx)

u Something like a CHECKPOINT_AND_PAUSE

u Consistent Backup to Blob Storage
u Maybe a pg_cloud_dump

u Loadable module

u Data FEC instead of data checksums
u Are data checksums really useful if you can’t recover

23

Questions and Discussion 24

Thanks for your attention.

Questions?
Presentation, Code and Raw Test Data at:
https://github.com/jzampieron/pgconf2019/tree/master

https://github.com/jzampieron/pgconf2019/tree/master

Extra Material 25

Motivation

u Where did this talk come from?
u Lessons learned running PG in the Cloud

u Balancing DevOps, Data Science and R&D
u Trying to understand Total Cost of Ownership

u NRE

u Recurring OpEx vs CapEx

u DX

u How does produce lifecycle fit into these considerations?
u Learning to ask the correct questions

26

