e

! VividCortex

L&

%' P s %,
-/'”r ‘\‘ > 48 8 888, o™

How To Index Your Database

Baron Schwartz « PostgresConf 2018

Logistics and Stuff

e Ask questions anytime

e Write me baron@vividcortex.com
e Tweet me at @xaprb

e Slides at xaprb.com/talks/

@xaprb

https://www.xaprb.com/talks/

Introduction and Agenda

The purpose of this talk is to organize and understand the principles of
database indexing.

e What are indexes?

e What kinds are there?

e How do they work?

e What are the three purposes of an index?

e What are the six ways to best design and use indexes?

@xaprb

What Are Indexes?

Indexes Help Find Data

Indexes are fast-lookup structures for the data in a table.
They essentially do two things with the data:

1. Maintain a search-optimized copy of the data.

@xaprb

Indexes Help Find Data

Indexes are fast-lookup structures for the data in a table.
They essentially do two things with the data:

1. Maintain a search-optimized copy of the data.
2. Point to the data’s original location.

@xaprb

How A Query Finds Rows
In A Table

SELECT ¢ FROM t WHERE b < 70;

This query must examine every row to find the
right ones.

@xaprb

table t index(b, d)

N

How A Query Finds Rows
With An Index

Indexes help find rows without full-scans.

288855833

e This is an index of columns (b, d).

e The index is a sorted copy of those
columns.

e The query scans the index untilb >= 70.

@xaprb

How A Query Finds Rows
With An Index

Indexes help find rows without full-scans.

e This is an index of columns (b, d).

e The index is a sorted copy of those
columns.

e The query scans the index until b >= 70.

e The index has pointers to the rows.

@xaprb

table t

index(b, d)

b

C

b

d

46

84

16
17

94
72

49

What About Starting From 70?

The index is more than a plain copy. It's organized in seekable ranges.

@xaprb

What About Starting From 70?

The index is more than a plain copy. It's organized in seekable ranges.

That lets the database seek to a starting point in the index.

@xaprb

That's All You Need To Know

Just remember an index is a sorted, searchable copy of data.

@xaprb

10

That's All You Need To Know

Just remember an index is a sorted, searchable copy of data.

e You don't need to know about B-Tree Algorithms.
e You don't need to know data structures.
e You don't need to understand O(log% (n)).

@xaprb

10

B-Trees For The Curious

Most databases default to B-tree indexes.
B-trees have sorted leaf nodes. They let the
database;

e Find single rows
e Find ranges of rows
e Retrieve rows in sort order.

@xaprb

Other Kinds Of Indexes

There are special-purpose indexes for special
purposes. Study them when you need them.

e Hash indexes

e Log-Structured Merge indexes

e Full-text search (inverted) indexes
e Geospatial indexes

e Block-range indexes

e Bitmap indexes

@xaprb

-
-
! -
: 4
5
o~
»
- ' 4
_

Three Data Access Rules

ﬂ, " =5 F T RS
! W . ‘

Three Data Access Rules

1. Reading a range of data in order is fast.
2. Reading a range out of order is slow.
3. A single-row retrieval or lookup is slow.

@xaprb

table t index(b, d)
a b c d b d
33 83 84 1 16 94
29 46 81 37 17 72

46

14

Three Data Access Rules

1. Reading a range of data in order is fast.

o Scanning the index for b < 70 is arange.

2. Reading a range out of order is slow.
3. A single-row retrieval or lookup is slow.

o Finding each row in the table is a lookup.

@xaprb

table t index(b, d)
a b C d b d
33 83 84 1" 16 94
29 46 81 37 17 72
11 46 30
59 46 9

92

91
87
7
82
68

67
72

45

37
43
71
29
43

1
74
49

15

Three

How Do Indexes Help?

1. Read less data.
2. Read data in bulk.
3. Read data presorted.

xaprb

1. Read Less Data

SELECT ¢ FROM t WHERE b < 70;

Without an index, this is a full table scan that
reads all rows and all columns.

@xaprb

18

1. Read Less Data

SELECT ¢ FROM t WHERE b < 70;

With an index, it reads only matching rows.

Three inefficiencies:

e |t reads extra columns
¢ |t reads from the table in random order
e |t reads from the table row-by-row

@xaprb

table t index(b, d)

a b C d b d

33 83 84 1" 16 94
29 46 81 37 17 72
1 46 30 71 30 33
50 46 9 43 46 15
18 84 52 74 46 37
919 30 0 33 46 43
61 16 91 94 46 71
3 3T 87 72 56 29
30 97 71 64 57 43
70 66 82 8 66 8

86 80 68 1 77 8

64 86 88 49 80 1

23 46 67 15 83 1
26 77 72 8 84 74
46 56 10 29 86 49
9 57 45 43 97 64

19

1. Read Less Data

Create an index with all columns mentioned:

index (b, c)
SELECT ¢ FROM t WHERE b > 70;

Now the index “covers” the query and it
doesn't access the table at all!

e No row-by-row lookups
e No randomly ordered access

@xaprb

table t index(b, c)
a b C d 4] C
33 83 84 1 16 91
29 46 81 37 17 87
1 46 30 " 30 0
5 46 9 43 46 9
18 84 52 74 46 30
99 30 0 33 46 67
61 16 91 94 46 81
3 17 87 72 56 10
30 97 71 64 57 45
70 66 82 8 66 82
86 80 68 1 77 72
64 86 88 49 80 68
23 46 67 15 83 84
26 77 72 8 84 52
46 56 10 29 86 88
9 57 45 43 97 71

20

2. Read Data In Bulk

Indexes are sorted, so logically nearby rows
are physically nearby.

Range queries will read pages that are
densely packed with desired rows.

Densely packed pages let the database:

e Read fewer pages (goal #1)
e Read pages in sequential order, avoiding

axaprb random reads

2. Read Data In Bulk

To achieve this you can use index-organized
tables or clustered indexes.

e The table itself is sorted in physical order
e The search-and-seek structures are built on
the table, not separately

@xaprb

22

2. Read Data In Bulk

SELECT ¢ FROM t WHERE b < 70;
The query scans a range from the table only.

e Bulk access
e Ordered access
e Some superfluous columns

@xaprb

table t

b

61

91
59
1

E2a88BSes 3

16
17

46
46
46
46

57
66
77
80
83

86
97

23

3. Read Data Presorted

Indexes are sorted, so the database doesn’t
need to sort.

This helps optimize queries such as:

e ORDER BY
e GROUP BY
e DISTINCT
e MIN and MAX

@xaprb

The Three-Star System

Grade an index with three stars, one for each:

e A starif the rows are densely packed.
e A starif the rows are sorted.

e A starif the query doesn't access the table.

The third star is often much more important!

@xaprb

1. Don't Defeat Indexes

This query defeats an index on column a:

. WHERE NOW() > a + INTERVAL 30 DAY;
This query can use the index:

. WHERE a > NOW() - INTERVAL 30 DAY;

You can seek/search for a value in an index,
but not an expression.

@xaprb

2. The Left-Prefix Rule

Multi-column indexes are sorted by column 1,
then column 2, etc.

e Queries can use a prefix of an index.
e They generally can't use a suffix.

WHERE c < 70 won't work, it will be a full index
scan.

@xaprb

index(b, c)

b

c

16
17
30
46
46
46
46
56
57
66
77
80
83
84
86

97

91
87

28

index(b, c)

2. The Left-Prefix Rule L
17 87
A prefix specifies a range up to and including ig g
the first inequality. 46 30
46 67
WHERE b < 70 AND c < 50 w2 B
56 10
57 45
Anything past the first inequality is sub- 66 82
filtering the range: no longer bulk access. 7 72
80 68
e Place equalities first, ranges last :3 ::
e Try supplying missing equalities or 86 88
97 MM

axaprb converting ranges to lists of values

3. Exploit Index-Only Queries

Create covering indexes for important queries (index-only queries).

Remember: it works only if the index has all the columns the query
mentions.

It's often possible to union the indexes needed by several important
gueries.

@xaprb

30

4. Exploit Clustered Indexes

The benefit of a clustered index is the table is physically organized in PK
order.

e Supported in Oracle, MySQL, SQL Server, IBM DB2 LUW
e Not supported in PostgreSQL, despite CLUSTER command (~ DEFRAG)

There can be only one clustered index per table.

@xaprb

31

5. Consider Column Selectivity And Order

Column order in compound indexes matters a lot!

e For queries:
o The leftmost prefix rule applies
o Makes indexes useful for queries, or not
e For data characteristics:
o QOrganize by most-selective or least-selective
o The best order depends on use-case: least for bulk reads, most for
single-rows.

@xaprb

32

6. Avoid Over-Indexing...

Indexes add cost to writes and complicate the
planner’s job

e Avoid duplicates

e Analyze redundant indexes with a common
prefix

e Analyze unused indexes

@xaprb

6. But Don't Fear Indexes

Caution: “unused” indexes often really aren't!

Indexes are a lot less expensive than you'd
guess. Cost/benefit tradeoffs usually weigh in
favor of indexes.

For a rigorous analysis, see Lahdenmaki and
Leach’s book.

@xaprb

Resources

@xaprb

35

https://www.vividcortex.com/resources/practical-query-optimization
http://sql-performance-explained.com/
https://www.amazon.com/Relational-Database-Index-Design-Optimizers-ebook/dp/B000PY48KE/

Slides and Contact Information

Slides are at
https:/www.xaprb.com/talks/ or

you can scan the QR code.

License: CC BY-SA 4.0

Contact: @xaprb and
baron@vividcortex.com

@xaprb

36

https://www.xaprb.com/talks/
https://creativecommons.org/licenses/by-sa/4.0/

Photo Credits

e Dragons Blood Tree

o Keys

@xaprb

37

https://www.flickr.com/photos/rod_waddington/10941931846/
https://www.flickr.com/photos/popilop/331357312/

