
Databases run better with Percona

Do You Know A CID From An
OID Or An XID? A beginners
guide to the alphabet soup
found in and around
PostgreSQL tuples.

Dave Stokes
@Stoker
David.Stokes@Percona.com
https://speakerdeck.com/stoker 2

mailto:David.Stokes@Percona.com

©2023 Percona | Confidential

Who Am I
I am Dave Stokes
Technology Evangelist at Percona
Author of MySQL & JSON - A Practical Programming Guide
Over a decade on the Oracle MySQL Community Team
Started with MySQL 3.29

David.Stokes@Percona.com
@Stoker
https://speakerdeck.com/stoker

3

mailto:David.Stokes@Percona.com

©2023 Percona | Confidential

Do You Know A CID From An OID Or An XID? A
beginners guide to the alphabet soup found in and
around PostgreSQL tuples.

The learning curve for PostgreSQL can be nearly vertical for those caught up in the
terminology.
So if you find yourself stuck between MIN and CMAX, or have no idea what those things
are, then you should be in this talk.
This will be a gentle introduction for those new to PostgreSQL to some of the more
common but no less obscure terminology that you will stumble over when trying to
discern the manual pages or follow online discussions.
If you can not define a CID, XID, or OID, then you may want to attend to broaden your
knowledge.

4

How Does PG Work?
The deep, dark secret nobody admits to!

XPS?
Acronyms can cause problems!

Starting with the basics

©2023 Percona | Confidential

Ground rules

● The source code is the definitive answer
● followed by the documentation

9

©2023 Percona | Confidential

Let us start with an insert

test=# CREATE TABLE example_1 (id int, a int);
CREATE TABLE
test=# INSERT INTO example_1 VALUES (1,2);
INSERT 0 1

10

What is that 0 & 1 stuff??

On successful completion, an INSERT command returns a command tag of the form

INSERT oid count

The count is the number of rows inserted or updated. oid is always 0
(it used to be the OID assigned to the inserted row if count was exactly one and the target table was declared WITH OIDS and 0 otherwise, but creating a table WITH OIDS is not supported anymore).

Not exactly intuitive
Thus you need two things handy at all times

©2023 Percona | Confidential

Please keep these handy
1. PostgreSQL Manual

a. https://www.postgresql.org/docs/16/index.html

2. PostgreSQL internals book
a. https://edu.postgrespro.com/postgresql_internals-14_parts1-4_en.pdf

12

https://www.postgresql.org/docs/16/index.html
https://edu.postgrespro.com/postgresql_internals-14_parts1-4_en.pdf

©2023 Percona | Confidential

So lets try another insert

foo=# create database basics;
CREATE DATABASE
tdetest=# \c basics
You are now connected to database "basics" as user "stoker".
basics=# create table a (id int, data char(10));
CREATE TABLE
basics=# insert into a values (1,'first');
INSERT 0 1
basics=#

13

But where did that data go?

©2023 Percona | Confidential

Some background on our table
basics=# \dt+ a
 List of relations
 Schema | Name | Type | Owner | Persistence | Access method | Size | Description
--------+------+-------+--------+-------------+---------------+------------+-------------
 public | a | table | stoker | permanent | heap | 8192 bytes |
(1 row)

basics=#

14

Things to notice:
Access method
Size

©2023 Percona | Confidential

What the system added
basics=# select attrelid, attname, atttypid from pg_attribute where attrelid = 'a'::regclass;
 attrelid | attname | atttypid
----------+----------+----------
 18103 | tableoid | 26
 18103 | cmax | 29
 18103 | xmax | 28
 18103 | cmin | 29
 18103 | xmin | 28
 18103 | ctid | 27
 18103 | id | 23
 18103 | data | 1042
(8 rows)

15

Remember 18103 for later!!!

©2023 Percona | Confidential

What the system added

basics=# select attrelid, attname, atttypid from pg_attribute
where attrelid = 'a'::regclass;
 attrelid | attname | atttypid
----------+----------+----------
 18103 | tableoid | 26
 18103 | cmax | 29
 18103 | xmax | 28
 18103 | cmin | 29
 18103 | xmin | 28
 18103 | ctid | 27
 18103 | id | 23
 18103 | data | 1042
(8 rows)

16

The two columns we created
with create table a (id int, data char(10));

©2023 Percona | Confidential

What the system added
basics=# select attrelid, attname, atttypid from pg_attribute where attrelid = 'a'::regclass;
 attrelid | attname | atttypid
----------+----------+----------
 18103 | tableoid | 26
 18103 | cmax | 29
 18103 | xmax | 28
 18103 | cmin | 29
 18103 | xmin | 28
 18103 | ctid | 27
 18103 | id | 23
 18103 | data | 1042
(8 rows)

17

Stuff added for us!

©2023 Percona | Confidential

Remember: SELECT * FROM foo;

* means
everything but
the system
comums

18

©2023 Percona | Confidential

basics=# show data_directory;
 data_directory

 /var/lib/postgresql/16/main
(1 row)

19

root@test1:/var/lib/postgresql/16/main# find . -name 18103
./base/18102/18103
root@test1:/var/lib/postgresql/16/main# ls -lhrt ./base/18102/18103
-rw------- 1 postgres postgres 8.0K Mar 25 10:49 ./base/18102/18103

Where did that 18103 insert go?

SELECT pg_relation_filepath(‘a’);

basics=# show data_directory;
 data_directory

 C:/Program Files/PostgreSQL/15/data
(1 row)

basics=# select pg_relation_filepath('x');
 pg_relation_filepath

 base/28051/28065

©2023 Percona | Confidential

What is in that file
root@test1:/var/lib/postgresql/16/main# od -c !$
od -c ./base/18102/18103

0000000 \0 \0 \0 \0 270 337 264 ; \0 \0 \0 \0 034 \0 330 037

0000020 \0 004 \0 \0 \0 \0 330 237 N \0 \0 \0 \0 \0

0000040 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0

*

0017720 \0 \0 \0 \0 \0 \0 \0 \0 341 003 \0 \0 \0 \0 \0 \0

0017740 \0 \0 \0 \0 \0 \0 \0 \0 001 \0 002 \0 002 \b 030 \0

0017760 001 \0 \0 \0 027 f i r s t \0

0020000

20

©2023 Percona | Confidential

root@test1:/var/lib/postgresql/16/main# od -c !$
od -c ./base/18102/18103

0000000 \0 \0 \0 \0 270 337 264 ; \0 \0 \0 \0 034 \0 330 037

0000020 \0 004 \0 \0 \0 \0 330 237 N \0 \0 \0 \0 \0

0000040 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0

*

0017720 \0 \0 \0 \0 \0 \0 \0 \0 341 003 \0 \0 \0 \0 \0 \0

0017740 \0 \0 \0 \0 \0 \0 \0 \0 001 \0 002 \0 002 \b 030 \0

0017760 001 \0 \0 \0 027 f i r s t \0

0020000

21

Not obvious where the ‘id’ went.
But we can see where the ‘data’ is!

Alphabet Soup

©2023 Percona | Confidential

More than the * data
basics=# select tableoid, xmin, cmin, xmax, cmax, ctid, * from a;
 tableoid | xmin | cmin | xmax | cmax | ctid | id | data
----------+------+------+------+------+-------+----+------------
 18103 | 993 | 0 | 0 | 0 | (0,1) | 1 | first
 18103 | 994 | 0 | 0 | 0 | (0,2) | 22 | Second
(2 rows)

23

Every table has several system columns that are implicitly defined by the
system.

Therefore, these names cannot be used as names of user-defined columns.
(Note that these restrictions are separate from whether the name is a
keyword or not; quoting a name will not allow you to escape these
restrictions.)

You do not really need to be concerned about these columns; just know they
exist.*

* Unless you are the type to sit through a session on this stuff!

©2023 Percona | Confidential

ctid

The physical location (pointer) of the row version within its table.

Note that although the ctid can be used to locate the row version very quickly, a row's ctid will
change if it is updated or moved by VACUUM FULL.

Therefore ctid is useless as a long-term row identifier.

A primary key should be used to identify logical rows.

24

©2023 Percona | Confidential

CTID

basics=# create table x (id integer not null primary key, y int, z
int);
CREATE TABLE
basics=# insert into x values (1,2,3),(4,5,6);
INSERT 0 2
basics=# select ctid, * from x;
 ctid | id | y | z
-------+----+---+---
 (0,1) | 1 | 2 | 3
 (0,2) | 4 | 5 | 6
(2 rows)

25

©2024 Percona

Page Layout Simplified – usually 8K is size

26

HEADER

Special

ITEM 1 ITEM 2

Tuple 1 (0,1)Tuple 2 (0,2)

Tuple 3 (future)

ITEM 3 (future)

©2023 Percona | Confidential

basics=# insert into a values (22,'Second');
INSERT 0 1
basics=#

basics=# select xmin, xmax, * from a;
 xmin | xmax | id | data
------+------+----+------------
 993 | 0 | 1 | first
 994 | 0 | 22 | Second
(2 rows)

27

Add a second row, start to see system columns

©2023 Percona | Confidential

tableoid

The OID of the table containing this row.

This column is particularly handy for queries that select from partitioned tables or inheritance
hierarchies , since without it, it's difficult to tell which individual table a row came from.

The tableoid can be joined against the oid column of pg_class to obtain the table name.

(select * from pg_class where oid=28055;)

28

©2023 Percona | Confidential

Tableoid

basics=# select tableoid, * from x;
 tableoid | id | y | z
----------+----+---+---
 28058 | 1 | 2 | 3
 28058 | 4 | 5 | 6
 28058 | 7 | 8 | 9
(3 rows)

29

basics=# select relname
from pg_class
where oid=28058;
 relname

 x
(1 row)

©2023 Percona | Confidential

xmin

The identity (transaction ID) of the inserting transaction for this row version.

(A row version is an individual state of a row; each update of a row creates a new row version
for the same logical row.)

When a row is created the xmin value is set to the Transaction of the INSERT statement.

30

©2023 Percona | Confidential

xmax

The identity (transaction ID) of the deleting transaction, or zero for an undeleted row version.

 It is possible for this column to be nonzero in a visible row version.

That usually indicates that the deleting transaction hasn't committed yet, or that an
attempted deletion was rolled back.

To identify different versions of the same row, PG marks each of them with two values - XMIN,
and XMAX to defineve the ‘validity’ of each row version.

When a row is DELETED the xmac of the current version is set to Transaction ID of the DELETE
statement.

31

Consider (for now) that an UPDATE can be seen as two parts - a DELETE
and an INSERT. The XMAX value of the current row is set to the
transaction ID of the UPDATE. Then a new version of the tow with the XMIN
set to the XMAX of the precious version.

©2023 Percona | Confidential

xmin & xmax
basics=# select xmin, xmax, * from x;
 xmin | xmax | id | y | z
------+------+----+---+---
 1157 | 0 | 1 | 2 | 3
 1157 | 0 | 4 | 5 | 6

32

basics=# select pg_current_xact_id(), txid_current();
 pg_current_xact_id | txid_current
--------------------+--------------
 1158 | 1158

basics=# INSERT INTO x VALUES (7,8,9);
INSERT 0 1
basics=# select xmin, xmax, * from x where id=7;
 xmin | xmax | id | y | z
------+------+----+---+---
 1159 | 0 | 7 | 8 | 9

©2023 Percona | Confidential

Terminal #1
basics=# start transaction;
START TRANSACTION
basics=*# update x set z=0 where id = 1 or id = 7;
UPDATE 2
basics=*# select xmin, xmax, * from x order by id;
 xmin | xmax | id | y | z
------+------+----+---+---
 1160 | 0 | 1 | 2 | 0
 1157 | 0 | 4 | 5 | 6
 1160 | 0 | 7 | 8 | 0

33

©2023 Percona | Confidential

Terminal #2 (not in the transaction)
basics=# select xmin, xmax,* from x;
 xmin | xmax | id | y | z
------+------+----+---+---
 1157 | 1160 | 1 | 2 | 3
 1157 | 0 | 4 | 5 | 6
 1159 | 1160 | 7 | 8 | 9

34

Xmax > 0 is telling us another version of the data
is out there and the transaction if is 1154.

Also note the value of column z for id =1 & id = 7

©2023 Percona | Confidential

Terminal #3
basics=# update x set z = 1 where id = 4;
UPDATE 1
basics=#

35

©2023 Percona | Confidential

Back to Terminal #1 ; still in transaction
basics=# select xmin,xmax,* from x order by id;
 xmin | xmax | id | y | z
------+------+----+---+---
 1160 | 1154 | 1 | 2 | 3
 1161 | 0 | 4 | 5 | 1 terminal 3
 1160 | 1154 | 7 | 8 | 9

36

Because there was no lock on the rows in
the transaction for Terminal number 3,
xmax = 0;

Xmin was incremented

©2023 Percona | Confidential

Back to Terminal #2
basics=*# update x set y=0;
HANGS!!!

37

©2023 Percona | Confidential

Terminals 1 & 2
basics=*# select xmin, xmax, * from x order by id;
 xmin | xmax | id | y | z
------+------+----+---+---
 1160 | 0 | 1 | 2 | 0
 1161 | 0 | 4 | 5 | 1
 1160 | 0 | 7 | 8 | 0

38

basics=*# commit;
COMMIT

basics=# select xmin, xmax, * from x order by id;
 xmin | xmax | id | y | z
------+------+----+---+---
 1162 | 1162 | 1 | 0 | 0
 1162 | 0 | 4 | 0 | 1
 1162 | 1162 | 7 | 0 | 0

basics=# update x set y=0;
HANGS!!!
UPDATE 3
basics=# select xmin, xmax, *
from x order by id;
 xmin | xmax | id | y | z
------+------+----+---+---
 1162 | 1162 | 1 | 0 | 0
 1162 | 0 | 4 | 0 | 1
 1162 | 1162 | 7 | 0 | 0

More transaction stuff
Just what you wanted

©2023 Percona | Confidential

cmin
The command identifier (starting at zero) within the inserting transaction.

40

©2023 Percona | Confidential

cmax

The command identifier within the deleting transaction, or zero.

41

©2023 Percona | Confidential

Those definitions were as clear as mud

‘cmin‘ and ‘cmax‘ are overlapped fields and are used
within the same transaction to identify the command
that changed a tuple.

Remember how xmin/xmax work for rows, cmin/cmax
are the equivalent but inside a transaction!

42

©2023 Percona | Confidential

basics=# insert into foo values (1,1);
INSERT 0 1
basics=# begin;
BEGIN
basics=*# insert into foo values (2,2);
INSERT 0 1
basics=*# select cmin,cmax, x, y from foo order by x;
 cmin | cmax | x | y
------+------+---+---
 0 | 0 | 1 | 1
 0 | 0 | 2 | 2
(2 rows)

basics=*# update foo set y=22 where x=2;
UPDATE 1
basics=*# select cmin,cmax, x, y from foo order by x;
 cmin | cmax | x | y
------+------+---+----
 0 | 0 | 1 | 1
 1 | 1 | 2 | 22

43

basics=*# insert into foo values (3,3);
INSERT 0 1
basics=*# select cmin,cmax, x, y from foo order by x;
 cmin | cmax | x | y
------+------+---+----
 0 | 0 | 1 | 1
 1 | 1 | 2 | 22
 2 | 2 | 3 | 3
(3 rows)

basics=*# update foo set y=222 where x=2;
UPDATE 1
basics=*# select cmin,cmax, x, y from foo order by x;
 cmin | cmax | x | y
------+------+---+-----
 0 | 0 | 1 | 1
 3 | 3 | 2 | 222
 2 | 2 | 3 | 3

Whew!
Hopefully this filled in some knowledge gaps!

©2024 Percona

Percona is hiring!
● Senior Software Engineer (PostgreSQL)
● Support Engineer (PostgreSQL)
● PostgreSQL Evangelist

… and more!

percona.com

THANK YOU!
David.Stokes@Percona.Com
@Stoker
speakerdeck.com/stoker

