Love Your Database

Postgres Types

Guyren G Howe

C % nytimes.com/2024/04/03/technology/prevent-cyberattack-linux.html ® O O & ¢ L w0 B & I | '{ﬁ

' = b

C
[DE 0 [AKX [2 \
osoit engineer noticed some 0 off on a piece o = |
0 are he worked o e soon discovered someone wa T

[TTIN

Timestamp With Time Zone
(aka timestamptz)

SHOW timezone;

TimeZone

America/Los Angeles

CREATE TABLE tz test(

x TIMESTAMP WITH TIMEZONE
) ;
CREATE TABLE

INSERT INTO tz test (x)

VALUES
('2024-04-17 09:00:00 =07");

SELECT x FROM tz test;

2024-04-17 09:00:00-07

For timestamp with time zone, the internally
stored value is always in UTC...

An input value that has an explicit time zone
specified is converted to UTC using the
appropriate offset for that time zone

If no time zone is stated in the input string, then
it is assumed to be in the time zone indicated
by the system's TimeZone parameter

When a timestamp with time zone value is
output, it is always converted from UTC to the
current timezone

INSERT INTO tZ_teSt(X) VALUES (
<72024-04-17 09:00:00 +00" 2
SELECT x FROM tz test;

2024-04-17 09:00:00-07
C2024-04-17 02:00:00-07

CREATE TABLE timestamp test (
x TIMESTAMP) ;
CREATE TABLE

VALUES ('2024-04-18 12:00:00&03]
SELECT x FROM timestamp test ;

INSERT INTO timestamp_tes&jfg
) 7

2024-04-18 12:00:00

INSERT INTO timestamp test (x)
VALUES (

'2024-04-18 12:00:00+03"

<zzgimestamptz

) ;

SELECT
X

FROM

timestamp test;

(2024-04-18 06:00:00 >

Time With Time Zone
(aka timetz)

Money

The money type stores a currency amount with a
fixed fractional precision... The fractional precision
is determined by the database's Ic_monetary setting

The money type stores a currency amount with a fixed
fractional precision... The fractional precision is
determined by the database's Ic_monetary setting

SET lc monetary='en US.utf8';
SET
CREATE TABLE t (m MONEY) ;

INSERT INTO t VALUES('$1000.00");
INSERT 0O 1
TABLE t;

$1,000.00

(1 row)

SET lc monetary='ja JP.utf8';
SET

TABLE t;

¥100,000

CHARACTER(...)

SELECT 'a'::character (10) ;
bpchar

SELECT LENGTH('a'::character (10)) ;
length

1

SELECT

'a': :CHARACTER (10) | |
'b': :CHARACTER (10) ;
2column?

abp

Values of type character are physically padded
with spaces to the specified width n, and
are stored and displayed that way. However,
trailing spaces are treated as semantically
insignificant and disregarded when
comparing two values of type character.

Values of type character are physically padded
with spaces to the specified width n, and are
stored and displayed that way. However,
trailing spaces are treated as semantically
insignificant and disregarded when
comparing two values of type character.

Values of type character are physically padded
with spaces to the specified width n, and are
stored and displayed that way. However,
trailing spaces are treated as semantically
insignificant and disregarded when
comparing two values of type character.

Trailing spaces are removed when converting
a character value to one of the other string
types. Note that trailing spaces are
semantically significant in character varying
and text values, and when using pattern
matching

Trailing spaces are removed when converting
a character value to one of the other string
types. Note that trailing spaces are
semantically significant in character
varying and text values, and when using
pattern matching

Thanks!

* Laurenz Albe

* lan

* Adrian Klaver

* David G Johnston
* Tom Lane

e Paul Jungwirth

Enums

Enums
Advantages

 Performance

« Simpler SQL

Enums
Disadvantages

» Performance
* “An enum value occupies four bytes on disk.”
« Changes involve DDL
» Fixed order
» Fixed case
* Non-localisation friendly

* Less Portable

Range Types

Thanks to Paul Jungwirth

Inclusive Exclusive

¥ /

SELECT '[3,7)'::1ntd4range;
intdrange

[3,7)
(1 row)

/* contains 3, 4, 5, 6 */

SELECT int4range (3,7, (D))
intd4drange

[3,7)
(1 row)

SELECT '{[3,7), [8,9)}'::1ntdmultirange;

/* contains 3, 4, 5, 6, 8 */

Operator Description Example Result
= equal int4range(1,5) = '[1,4]'::int4range t

<> not equal numrange(1.1,2.2) <> numrange(1.1,2.3) t

< less than int4range(1,10) < int4range(2,3) t

> greater than int4range(1,10) > int4range(1,5) t

<= less than or equal numrange(1.1,2.2) <= numrange(1.1,2.2) t

>= greater than or equal numrange(1.1,2.2) >= numrange(1.1,2.0) t

@ contains range int4range(2,4) @ int4range(2,3) t

@ contains element '[2011-01-01,2011-03-01) ': :tsrange @ '2011-01-10'::timestamp |t

<@ range is contained by int4range(2,4) <@ int4range(1,7) t

<@ element is contained by 42 <@ int4range(1,7) f

&& overlap (have points in common) | int8range(3,7) && int8range(4,12) t

<< strictly left of int8range(1,10) << int8range(100,110) t

>> strictly right of int8range(50,60) >> int8range(20,30) t

&< does not extend to the right of | int8range(1,20) &< int8range(18,20) t

& does not extend to the left of int8range(7,20) & int8range(5,10) t

-|- is adjacent to numrange(1.1,2.2) -|- numrange(2.2,3.3) t

+ union numrange(5,15) + numrange(10,20) [5,20)
* intersection int8range(5,15) * int8range(10,20) [10,15)

difference

int8range(5,15) - int8range(10,20)

[5,10)

CREATE TYPE
lnetrange

AS RANGE (
subtype = 1net

) ;

SELECT
'[1.2.3.4,1.2.3.8]"'"::1netrange;
inetrange

[1.2.3.4,1.2.3.8]

SELECT 1netrange (
'1.2.3.4",
'1.2.3.8",

'[]'

1netrange

[1.2.3.4,1.2.3.8]

SELECT
'1.2.3.6"'::1net
&
'11.2.3.4,1.2.3.8]"'::1inetrange;
?column?

CREATE TABLE geoips (

1ps 1netrange NOT NULL,
country code TEXT NOT NULL,
latitude REAL NOT NULL,

1l onga-Eu EAT " NOT NULTLy; —
CONSTRAINT geolps dont overlap
EXCLUDE USING gist (ips WITH &&)
DEFERRABLE INITIALLY IMMEDIATE

CREATE OR REPLACE FUNCTION
lnet diff (x 1inet, y 1inet)
RETURNS DOUBLE PRECISION AS
S5
BEGIN
RETURN x - vy;
END;
S5
LANGUAGE 'plpgsqgl'
STRICT IMMUTABLE;

CREATE TYPE
inetrange
AS RANGE (
subtype = 1net,
subtype diff = inet diff
) ;

SELECT
'[1.1.1.1,1.1.1.3) "'"::1netrange
'(1.1.1.2,1.1.1.2]"'"::1netrange;
?column?

Composite Types

A composite type represents the structure
of a row or record; it is essentially just a list
of field names and their data types.

A composite type represents the structure of
a row or record; it is essentially just a list of
field names and their data types.

//Java

class 1nventory item {
String name;
int supplier 1d;
float ©price;

CREATE TYPE inventory item
@S

~ name text,
supplier id integer,
price numeric

) ;

CREATE TABLE on hand (_
item dnventory itemp
count integer

) ;

INSERT INTO
on hand
VALUESA —

(;;Euzzy dice', 42, 1.99),
N ,

) ;

Not a space

SELECT _
(1tem) .name
FROM
on hand
WHERE
item.price > 9.99;

SELECT

(Zééfhand.item .name
FROM | |

on hand
WHERE
(on hand.item) .price > 9.99;

UPDATE
on hand
SET
ltem.price =
(1Ltem) .price * 1.1;

CREATE TYPE address
street text,
city text,
Z1p int,
state text

AS

CREATE TYPE person AS (

addr <§§dreséz>

given teXxt,
family text

) ;

CREATE TABLE folks(

them.(i?ersogl)

notes text

) ;

INSERT INTO
folks (themy—moet
VALUES ((("1 Main S
' "Herotown'
90210,

'Freund) ,
'"The hero of the hour');

INSERT INTO
folks (them, notes)
VALUES((('l Main St',
'"Herotown',
90210,
'CA'"),
<Andrea§",
'FreundLL:>

'"The hero of the hour');

CREATE FUNCTIO
pp (addr @)
RETURNS text
LANGUAGE plpgsgl
PARALLEL SAFE LEAKPROOF COST 1

AS SfunctionSBEGIN

RETURN
addr.street || E'\n" ||
addr.city || E'\n" ||
addr.state || E'\n" ||
addr.z1ip;

END; Sfunction$

SELECT
pp X (them) .addr)
OM
folks;

PP

1 Main St+
Herotown +
CA +
90210
(1 row)

SELECT
(them) .addr{pp
FROM O

folks;
PP

1 Maln St+
Herotown +
CA +
90210
(1 row)

SELECT

folks.notes>

FROM
folks;
notes

The hero of the hour
(1 row)

SELECT

Chotes (folks)

FROM
folks;
notes

The hero of the hour
(1 row)

CREATE OPERATOR

CREATE OPERATOR — define a new operator
Synopsis

CREATE OPERATOR name (
{FUNCTION |PROCEDURE} = function_name
[, LEFTARG = left_type 1 [, RIGHTARG = right_type]
[, COMMUTATOR = com_op] [, NEGATOR = neg_op]
[, RESTRICT = res_proc 1 [, JOIN = join_proc 1
[, HASHES] [, MERGES]

CREATE (TABLE) inventory item
AS (
name text,
supplier id integer,
price numeric

) ;

CREATE TABRLE

inventory_it@

CREATE TABRLE
1nventory 1tems
OF

invgn#QLZNitem

“(name NOT NULL,™
price NOT NULL);

CREATE FUNCTION
pp (f folks)
RETURNS
TLext
LANGUAGE sqgl
PARALLEL SAFE LEAKPROOF COST 1
RETURN
(f.them) .given || L
(f.them) .family || E'\n" ||
(f.them) .addr{ppy

SEL f
folks.pp
FROM

folks;
PP

1 Main St+
Herotown +
CA +
90210
(1 row)

select them from folks;

— g A ———
<::;Ezgi} Main St"",Herotown, 90210,CA)",Andreas, Freund)
() , | -

select (them).* from folks;

addr | given | family
________ = Mm—;_________m : . —
< ("1 Main St",Herotown, 90210,CA) | Andreas | Freund

(1 rowy

“But that’s not Relational’

O
Gb

Wrong 1

From Wikipedia, the free encyclopedia

In database theory, a relation, as
originally defined by E. F. Codd,[1] is
a set of tuples (d1,d2,...,dn), where
each element dj is a member of Dy,
a data domain.

Wrong #1

From Wikipedia, the free encyclopedia

In database theory, a relation, as
originally defined by E. F. Codd,[1] is
a set of tuples (d1,d2,...,dn), where
each element dj iIs a member of Dj,
a data domain.

Wrong #2

From Wikipedia, the free encyclopedia

...each element [of a row] is termed
an attribute value. An attribute is a
name paired with a ... data type.

Wrong #2

From Wikipedia, the free encyclopedia

...each element [of a row] is termed
an attribute value. An attribute is a
name paired with a ... data type.

SELECT

folks.notes
FROM |
folks;

notes

The hero of the hour
(1 row)

There Is an issue...

Thanks to Steven Frost

CREATE TYPE
twolint AS (
a int,
b 1nt

CREATE TABLE
tl (
a int,
b 1int

CREATE TABLE
t2 |
cl twoilnt

) ;

INSERT INTO
tl VALUES
(1,2);

INSERT INTO
t2 VALUES

((1,2));

SELECT

pPg column size(tl.*)
FROM B

tl;
pg column size

SELECT

pPg column size (t2.*)
FROM B

t2;
pg column size

